- Python Basics
-
Overview
- Introduction to Python and Installation
- Variables and Data Types
- Conditional Statements (if-else)
- Loops (for, while)
- Functions and Lambda Expressions
- Lists, Tuples, and Dictionaries
- File Handling (Reading/Writing Files)
- Exception Handling (Try, Except)
- Modules and Packages
- List Comprehensions and Generators
Functions and Lambda Expressions
1. Introduction
Functions allow code reuse by defining blocks that can be executed multiple times. Python also supports lambda expressions, which provide a quick way to define simple functions.
2. Defining Functions in Python
A function is defined using the def
keyword.
Syntax
def function_name(parameters):
# Function body
return value # Optional
Example: Simple Function
def greet():
print("Hello, World!")
greet()
Output
Hello, World!
3. Function Parameters and Arguments
Example: Function with Parameters
def greet(name):
print(f"Hello, {name}!")
greet("Aayush")
Output
Hello, Aayush!
Multiple Parameters
def add(a, b):
return a + b
result = add(5, 3)
print(result)
Output
8
4. Default Arguments
Default values can be assigned to function parameters.
def power(base, exponent=2):
return base ** exponent
print(power(3)) # Uses default exponent (2)
print(power(3, 3)) # Uses provided exponent (3)
Output
9
27
5. Keyword Arguments (kwargs
)
Allows passing arguments using key-value pairs.
def person_info(name, age):
print(f"Name: {name}, Age: {age}")
person_info(age=25, name="Ankit") # Order does not matter
Output
Name: Ankit, Age: 25
Arbitrary Keyword Arguments (**kwargs
)
Allows passing multiple named arguments.
def print_info(**info):
for key, value in info.items():
print(f"{key}: {value}")
print_info(name="Ankit", age=30, city="Delhi")
Output
name: Ankit
age: 30
city: Delhi
6. Returning Values from Functions
A function can return a value using return
.
def multiply(a, b):
return a * b
result = multiply(4, 5)
print(result)
Output
20
7. Lambda Functions (Anonymous Functions)
A lambda function is a one-line function without a name.
Syntax
lambda arguments: expression
Example: Lambda Function
square = lambda x: x ** 2
print(square(5))
Output
25
Using Lambda in map()
numbers = [1, 2, 3, 4]
squared = list(map(lambda x: x ** 2, numbers))
print(squared)
Output
[1, 4, 9, 16]
Using Lambda in filter()
numbers = [1, 2, 3, 4, 5, 6]
evens = list(filter(lambda x: x % 2 == 0, numbers))
print(evens)
Output
[2, 4, 6]
8. Nested Functions
A function inside another function.
def outer():
def inner():
print("Inside inner function")
inner()
outer()
Output
Inside inner function
9. Function Scope (Local vs. Global Variables)
- Local variables exist only inside a function.
- Global variables exist outside functions and can be accessed within functions.
Example
x = 10 # Global variable
def show():
x = 5 # Local variable
print("Inside function:", x)
show()
print("Outside function:", x)
Output
Inside function: 5
Outside function: 10
10. Summary
Functions allow code reuse and modularity.
Functions can have parameters, return values, and default arguments.
Lambda expressions provide a compact way to define functions.map()
and filter()
work well with lambda functions.**kwargs
allows handling multiple keyword arguments.
Prepare for Interview
- Debugging in Python
- Multithreading and Multiprocessing in Python
- Context Managers in Python
- Decorators in Python
- Generators in Python
- Requests in Python
- Django
- Flask
- Matplotlib/Seaborn
- Pandas
- NumPy
- Modules and Packages in Python
- File Handling in Python
- Error Handling and Exceptions in Python
- Indexing and Performance Optimization in SQL
Random Blogs
- Internet of Things (IoT) & AI – Smart Devices and AI Working Together
- AI & Space Exploration – AI’s Role in Deep Space Missions and Planetary Research
- Ideas for Content of Every niche on Reader’s Demand during COVID-19
- Google’s Core Update in May 2020: What You Need to Know
- Top 10 Blogs of Digital Marketing you Must Follow
- Store Data Into CSV File Using Python Tkinter GUI Library
- Mastering SQL in 2025: A Complete Roadmap for Beginners
- Deep Learning (DL): The Core of Modern AI
- 15 Amazing Keyword Research Tools You Should Explore
- Avoiding the Beginner’s Trap: Key Python Fundamentals You Shouldn't Skip
- AI in Cybersecurity: The Future of Digital Protection
- Understanding AI, ML, Data Science, and More: A Beginner's Guide to Choosing Your Career Path
- What is YII? and How to Install it?
- Understanding OLTP vs OLAP Databases: How SQL Handles Query Optimization
- Quantum AI – The Future of AI Powered by Quantum Computing
Datasets for Machine Learning
- Ozone Level Detection Dataset
- Bank Transaction Fraud Detection
- YouTube Trending Video Dataset (updated daily)
- Covid-19 Case Surveillance Public Use Dataset
- US Election 2020
- Forest Fires Dataset
- Mobile Robots Dataset
- Safety Helmet Detection
- All Space Missions from 1957
- OSIC Pulmonary Fibrosis Progression Dataset
- Wine Quality Dataset
- Google Audio Dataset
- Iris flower dataset
- Artificial Characters Dataset
- Bitcoin Heist Ransomware Address Dataset