- Data Analysis with Python
-
Overview
- Introduction to Data Science and Analytics
- Loading and Cleaning Data in Pandas
- Data Manipulation with NumPy and Pandas
- Exploratory Data Analysis (EDA) Techniques
- Handling Missing Data and Duplicates
- Merging, Joining, and Concatenating DataFrames
- Time Series Analysis Basics
- Data Visualization with Matplotlib and Seaborn
- Descriptive Statistics and Data Summarization
- Advanced Pandas Operations
Data Analysis with Python
In this tutorial series, we will explore Data Analysis with Python, covering essential tools and techniques used in real-world data science projects. We will use libraries like Pandas, NumPy, Matplotlib, and Seaborn to load, clean, manipulate, and visualize data.
What We Will Cover:
- Introduction to Data Science and Analytics – Understanding the role of Python in data science and why it is widely used.
- Loading and Cleaning Data in Pandas – Working with CSV, Excel, and other file formats, handling null values, and structuring datasets.
- Data Manipulation with NumPy and Pandas – Performing operations like sorting, filtering, and applying transformations to data.
- Exploratory Data Analysis (EDA) Techniques – Identifying trends, outliers, and key insights in datasets.
- Handling Missing Data and Duplicates – Strategies for dealing with incomplete or redundant data.
- Merging, Joining, and Concatenating DataFrames – Combining multiple datasets efficiently.
- Time Series Analysis Basics – Understanding trends and patterns in time-dependent data.
- Data Visualization with Matplotlib and Seaborn – Creating meaningful plots and charts for better data understanding.
- Descriptive Statistics and Data Summarization – Calculating measures like mean, median, variance, and correlation.
- Advanced Pandas Operations – Using groupby, pivot tables, and other advanced data handling techniques.
By the end of this series, you will have a strong foundation in Python for data analysis, enabling you to work with datasets effectively and extract valuable insights.
Prepare for Interview
- Debugging in Python
- Multithreading and Multiprocessing in Python
- Context Managers in Python
- Decorators in Python
- Generators in Python
- Requests in Python
- Django
- Flask
- Matplotlib/Seaborn
- Pandas
- NumPy
- Modules and Packages in Python
- File Handling in Python
- Error Handling and Exceptions in Python
- Indexing and Performance Optimization in SQL
Random Blogs
- The Ultimate Guide to Machine Learning (ML) for Beginners
- Python Challenging Programming Exercises Part 1
- Google’s Core Update in May 2020: What You Need to Know
- Datasets for analyze in Tableau
- The Ultimate Guide to Artificial Intelligence (AI) for Beginners
- Loan Default Prediction Project Using Machine Learning
- Where to Find Free Datasets for Your Next Machine Learning & Data Science Project
- AI in Cybersecurity: The Future of Digital Protection
- Datasets for Exploratory Data Analysis for Beginners
- String Operations in Python
- Types of Numbers in Python
- Data Analytics: The Power of Data-Driven Decision Making
- Exploratory Data Analysis On Iris Dataset
- Generative AI - The Future of Artificial Intelligence
- Python Challenging Programming Exercises Part 3
Datasets for Machine Learning
- Ozone Level Detection Dataset
- Bank Transaction Fraud Detection
- YouTube Trending Video Dataset (updated daily)
- Covid-19 Case Surveillance Public Use Dataset
- US Election 2020
- Forest Fires Dataset
- Mobile Robots Dataset
- Safety Helmet Detection
- All Space Missions from 1957
- OSIC Pulmonary Fibrosis Progression Dataset
- Wine Quality Dataset
- Google Audio Dataset
- Iris flower dataset
- Artificial Characters Dataset
- Bitcoin Heist Ransomware Address Dataset