- Data Analysis with Python
-
Overview
- Introduction to Data Science and Analytics
- Loading and Cleaning Data in Pandas
- Data Manipulation with NumPy and Pandas
- Exploratory Data Analysis (EDA) Techniques
- Handling Missing Data and Duplicates
- Merging, Joining, and Concatenating DataFrames
- Time Series Analysis Basics
- Data Visualization with Matplotlib and Seaborn
- Descriptive Statistics and Data Summarization
- Advanced Pandas Operations
Data Visualization with Matplotlib and Seaborn
Introduction
Data visualization is a crucial step in data analysis. It helps in understanding patterns, trends, and relationships within data. Matplotlib and Seaborn are two powerful Python libraries that enable effective data visualization.
In this tutorial, we will cover:
- Introduction to Matplotlib and Seaborn
- Creating Basic Plots with Matplotlib
- Customizing Plots in Matplotlib
- Seaborn for Statistical Data Visualization
- Advanced Plots with Seaborn
- Combining Matplotlib and Seaborn
1. Introduction to Matplotlib and Seaborn
- Matplotlib is a low-level library that provides complete control over plots.
- Seaborn is built on top of Matplotlib and is optimized for statistical data visualization.
Install the libraries if not already installed:
pip install matplotlib seaborn
Import required libraries:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
2. Creating Basic Plots with Matplotlib
Line Plot
# Sample data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create a line plot
plt.plot(x, y, label='Sine Wave', color='blue', linestyle='dashed')
# Adding labels and title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot Example')
plt.legend()
plt.show()
Bar Chart
# Sample data
categories = ['A', 'B', 'C', 'D']
values = [10, 25, 15, 30]
# Create a bar plot
plt.bar(categories, values, color='green')
# Adding labels
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart Example')
plt.show()
Histogram
# Generate random data
data = np.random.randn(1000)
# Create a histogram
plt.hist(data, bins=30, color='purple', edgecolor='black')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram Example')
plt.show()
3. Customizing Plots in Matplotlib
Matplotlib provides options to customize plots.
plt.figure(figsize=(8, 5))
plt.plot(x, y, color='red', linewidth=2, marker='o', markersize=5)
plt.xlabel('X-axis', fontsize=12)
plt.ylabel('Y-axis', fontsize=12)
plt.title('Customized Line Plot', fontsize=14)
plt.grid(True)
plt.show()
4. Seaborn for Statistical Data Visualization
Seaborn simplifies data visualization and provides aesthetically pleasing plots.
# Load sample dataset
df = sns.load_dataset("tips")
# Scatter plot using Seaborn
sns.scatterplot(x='total_bill', y='tip', data=df, hue='sex', style='smoker')
plt.title("Scatter Plot with Seaborn")
plt.show()
5. Advanced Plots with Seaborn
Box Plot (To analyze distributions and detect outliers)
sns.boxplot(x='day', y='total_bill', data=df, palette="coolwarm")
plt.title("Box Plot Example")
plt.show()
Heatmap (For correlation analysis)
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Heatmap Example")
plt.show()
6. Combining Matplotlib and Seaborn
You can use Matplotlib for fine-tuning plots created with Seaborn.
plt.figure(figsize=(8, 5))
sns.histplot(df['total_bill'], kde=True, bins=20, color='blue')
plt.xlabel('Total Bill')
plt.ylabel('Count')
plt.title('Histogram with KDE using Seaborn')
plt.grid(True)
plt.show()
Conclusion
- Matplotlib is great for detailed custom visualizations.
- Seaborn simplifies statistical data visualization.
- Both libraries can be used together for powerful visual storytelling.
Prepare for Interview
- Debugging in Python
- Multithreading and Multiprocessing in Python
- Context Managers in Python
- Decorators in Python
- Generators in Python
- Requests in Python
- Django
- Flask
- Matplotlib/Seaborn
- Pandas
- NumPy
- Modules and Packages in Python
- File Handling in Python
- Error Handling and Exceptions in Python
- Indexing and Performance Optimization in SQL
Random Blogs
- 5 Ways Use Jupyter Notebook Online Free of Cost
- Understanding AI, ML, Data Science, and More: A Beginner's Guide to Choosing Your Career Path
- AI & Space Exploration – AI’s Role in Deep Space Missions and Planetary Research
- Generative AI - The Future of Artificial Intelligence
- Big Data: The Future of Data-Driven Decision Making
- Internet of Things (IoT) & AI – Smart Devices and AI Working Together
- The Ultimate Guide to Artificial Intelligence (AI) for Beginners
- Top 10 Blogs of Digital Marketing you Must Follow
- Exploratory Data Analysis On Iris Dataset
- Ideas for Content of Every niche on Reader’s Demand during COVID-19
- The Ultimate Guide to Data Science: Everything You Need to Know
- The Ultimate Guide to Starting a Career in Computer Vision
- How to Start Your Career as a DevOps Engineer
- AI in Cybersecurity: The Future of Digital Protection
- What is YII? and How to Install it?
Datasets for Machine Learning
- Ozone Level Detection Dataset
- Bank Transaction Fraud Detection
- YouTube Trending Video Dataset (updated daily)
- Covid-19 Case Surveillance Public Use Dataset
- US Election 2020
- Forest Fires Dataset
- Mobile Robots Dataset
- Safety Helmet Detection
- All Space Missions from 1957
- OSIC Pulmonary Fibrosis Progression Dataset
- Wine Quality Dataset
- Google Audio Dataset
- Iris flower dataset
- Artificial Characters Dataset
- Bitcoin Heist Ransomware Address Dataset