Exploratory Data Analysis On Iris Dataset

1736876772.png

Written by Aayush Saini · 2 minute read · Jun 21, 2020 . Machine Learning, 64

Hi Everyone, We are Back with a New Project. In this Project, We Use Iris Dataset for Exploratory Data Analysis.

Necessary Library for this project,

  1. Pandas
  2. Numpy
  3. Seaborn
  4. Matplotlib

These Libraries are Enough for EDA. Now Let's Start


import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
#Load Datasets
iris = pd.read_csv('iris.csv')
#check Shape of this project
print(iris.shape)
#Check Columns in this project
print(iris.columns)
#Check Species of Iris Datasets
print("iris['species'].value_counts()")
#Check Scatter Plot Between Sepal_length Vs Sepal_width
iris.plot(kind='scatter', x='sepal_length', y='sepal_width')
plt.show()
iris1

Create a Whitegrid Scatter Plot Between sepal_leangth Vs Sepal_width , Hue= species


sns.set_style('whitegrid')
sns.FacetGrid(iris, hue='species',size=4) \
    .map(plt.scatter, 'sepal_length', 'sepal_width') \
    .add_legend()
plt.show()
iris2


 

Now We Show a Pairplot

plt.close()
sns.set_style('whitegrid')
sns.pairplot(iris,hue='species',size=3)
plt.show()
iris3

sns.FacetGrid(iris, hue='species', size=5) \ .map(sns.distplot, 'sepal_width') \ .add_legend() plt.show() Output:- iris4

PDF and CDF

counts, bin_edges = np.histogram(iris_setosa['petal_length'], bins=10, density=True)
pdf = counts/(sum(counts))
print(pdf)
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:], cdf)
counts, bin_edges = np.histogram(iris_setosa['petal_length'], bins=20, density=True)
pdf = counts/(sum(counts))
plt.plot(bin_edges[1:], pdf)
plt.show()
iris5

 

Box Plot

sns.boxplot(x='species',y='petal_length',data=iris)
plt.showow()
iris6

 
sns.violinplot(x='species',y='petal_length',data=iris,size=8)
plt.show()
iris7

 

Jointplot

sns.jointplot(x='petal_length',y='petal_width',data=iris_setosa,kind='kde')
plt.show()
iris8


Download Source Code  

Thanks for Reading Share this Post 

Share   Share