MongoDB - Interview Questions and Answers
MongoDB is a NoSQL database that stores data in a flexible, JSON-like format (BSON). It is schema-less and supports horizontal scaling.
BSON (Binary JSON) is MongoDB?s format for storing data, supporting additional types like Date
and ObjectId
.
Simply switch to a database name
use myDatabase
The database is created when you insert data.
MongoDB creates collections dynamically when inserting documents:
db.createCollection("users")
db.users.insertOne({ name: "Alice" })
se insertOne()
or insertMany()
db.users.insertOne({ name: "Alice", age: 25 })
db.users.insertMany([{ name: "Bob" }, { name: "Charlie" }])
db.users.find()
Use a query inside find()
db.users.find({ age: 25 })
Use projection:
db.users.find({}, { name: 1, _id: 0 })
db.users.find().sort({ age: -1 }) // Sort by age descending
db.users.find().limit(5)
db.users.updateOne({ name: "Alice" }, { $set: { age: 26 } })
db.users.updateMany({}, { $set: { status: "active" } })
db.users.updateOne({ name: "Alice" }, { $inc: { age: 1 } })
db.users.updateMany({}, { $rename: { "oldField": "newField" } })
db.users.replaceOne({ name: "Alice" }, { name: "Alice", age: 30, city: "NY" })
db.users.deleteOne({ name: "Alice" })
db.users.deleteMany({ age: { $lt: 18 } })
db.users.drop()
db.dropDatabase()
deleteOne()
removes the first matching document, while remove()
can remove multiple.
An index improves query performance by speeding up searches.
db.users.createIndex({ name: 1 }) // Ascending index
db.users.createIndex({ email: 1 }, { unique: true })
db.users.getIndexes()
db.users.dropIndex("name_1")
Aggregation processes data and returns computed results, like GROUP BY
in SQL.
db.users.aggregate([
{ $match: { age: { $gt: 20 } } },
{ $group: { _id: "$city", total: { $sum: 1 } } }
])
Filters documents (like WHERE
in SQL).
Groups data based on a field.
Selects which fields to include in the output.
Use $lookup
:
db.orders.aggregate([
{ $lookup: { from: "users", localField: "userId", foreignField: "_id", as: "userDetails" } }
])
Embedding stores data inside the document, referencing stores IDs.
When data is frequently read together.
When data is large and frequently updated.
Use arrays or references.
Yes, since version 4.0.
const session = db.getMongo().startSession();
session.startTransaction();
Use transactions, write concerns, and validation rules.
db.createUser({ user: "admin", pwd: "password", roles: ["readWrite"] })
Use --auth
when starting MongoDB
Replication keeps multiple copies of data for high availability.
A group of MongoDB servers with primary and secondary nodes.
Sharding distributes data across multiple machines.
When the dataset is too large for a single server.
rs.status()
A cloud database service for MongoDB.
A fixed-size collection that overwrites old data.
mongodump --db myDatabase
mongorestore --db myDatabase dump/
A MongoDB feature for storing large files.
Tutorials
Random Blogs
- Python Challenging Programming Exercises Part 1
- AI Agents & Autonomous Systems – The Future of Self-Driven Intelligence
- Top 10 Knowledge for Machine Learning & Data Science Students
- 10 Awesome Data Science Blogs To Check Out
- SQL Joins Explained: A Complete Guide with Examples
- Career Guide: Natural Language Processing (NLP)
- Downlaod Youtube Video in Any Format Using Python Pytube Library
- Best Platform to Learn Digital Marketing in Free
- Mastering SQL in 2025: A Complete Roadmap for Beginners
- Where to Find Free Datasets for Your Next Machine Learning & Data Science Project