Lists in Python - Interview Questions and Answers
A list in Python is a collection of elements that can contain items of different data types. It is dynamic (resizable) and supports various operations. Unlike arrays (e.g., in C), lists can store mixed data types and don't require predefined sizes.
my_list = [1, 2, 3, "hello", 5.5] # Using square brackets
empty_list = list() # Using the list() constructor
- Indexing:
my_list[0]
- Negative indexing:
my_list[-1]
- Slicing:
my_list[1:3]
Use len()
:
len(my_list)
append(x)
: Addsx
as a single element.extend(iterable)
: Adds elements from an iterable to the list.
lst = [1, 2]
lst.append(3) # [1, 2, 3]
lst.extend([4, 5]) # [1, 2, 3, 4, 5]
remove(value)
: Removes the first occurrence ofvalue
.pop(index)
: Removes and returns an element atindex
.del list[index]
: Deletes an element by index.
Slicing extracts a portion of a list. Syntax: list[start:end:step]
.
lst = [1, 2, 3, 4]
print(lst[1:3]) # [2, 3]
lst.reverse() # In-place reversal
reversed_list = lst[::-1] # New reversed list
for item in lst:
print(item)
if element in lst:
print("Found")
combined = list1 + list2
List comprehensions are concise and more efficient for creating lists.
squared = [x**2 for x in range(5)]
shallow_copy = my_list.copy()
deep_copy = copy.deepcopy(my_list) # For nested lists
lst.sort() # In-place
sorted_list = sorted(lst) # Returns a new list
Mutable objects (like lists) can be changed after creation, whereas immutable objects (like tuples) cannot.
Raises IndexError
.
unique = list(set(lst))
count = lst.count(element)
index = lst.index(element)
Negative indices count from the end. -1
refers to the last element.
append
: O(1)pop
: O(1) at the end, O(n) at the beginning.insert
: O(n)del
: O(n)
flattened = [item for sublist in nested_list for item in sublist]
Lists store references to objects, not the objects themselves.
Combine two lists into pairs:
zipped = list(zip(list1, list2))
for index, value in enumerate(lst):
print(index, value)
second_largest = sorted(set(lst))[-2]
lst = [x for x in lst if x != value]
pairs = [(x, y) for x in lst for y in lst if x + y == target]
intersection = list(set(list1) & set(list2))
union = list(set(list1) | set(list2))
difference = list(set(list1) - set(list2))
symmetric_diff = list(set(list1) ^ set(list2))
Use the heapq.merge()
function:
import heapq
merged = list(heapq.merge(sorted_list1, sorted_list2))
def chunks(lst, size):
for i in range(0, len(lst), size):
yield lst[i:i + size]
chunked = list(chunks(my_list, 3))
import random
random.shuffle(my_list)
from collections import Counter
most_frequent = Counter(lst).most_common(1)[0]
result = " ".join(my_list)
matrix = [[1, 2], [3, 4], [5, 6]]
transposed = list(zip(*matrix))
data = [{'name': 'Alice', 'age': 25}, {'name': 'Bob', 'age': 22}]
sorted_data = sorted(data, key=lambda x: x['age'])
cleaned = [x for x in lst if x]
reversed_words = [word[::-1] for word in lst]
n = 2
rotated = lst[n:] + lst[:n]
is_palindrome = lst == lst[::-1]
from itertools import permutations
perms = list(permutations(lst))
def flatten(lst):
for item in lst:
if isinstance(item, list):
yield from flatten(item)
else:
yield item
flattened = list(flatten(nested_list))
- Use list comprehensions for speed.
- Avoid redundant copies.
- Use generators when processing large data.
- Consider libraries like
numpy
for numerical data.
List slicing does not create new objects unnecessarily. Use it to access subsets of data without loops.
copy()
: Shallow copy (only references are copied for nested elements).deepcopy()
: Copies all levels of the list.
import copy
deep = copy.deepcopy(lst)
shallow = lst.copy()
are_equal = list1 == list2 # Checks order and elements
numpy
: For numerical arrays.pandas
: For tabular data.deque
(fromcollections
): For faster insertions and deletions.array
: For type-restricted arrays
Tutorials
Random Blogs
- Ideas for Content of Every niche on Reader’s Demand during COVID-19
- The Ultimate Guide to Data Science: Everything You Need to Know
- Understanding HTAP Databases: Bridging Transactions and Analytics
- SQL Joins Explained: A Complete Guide with Examples
- Career Guide: Natural Language Processing (NLP)
- Deep Learning (DL): The Core of Modern AI
- Top 10 Knowledge for Machine Learning & Data Science Students
- Why to learn Digital Marketing?
- Important Mistakes to Avoid While Advertising on Facebook
- String Operations in Python