Matplotlib/Seaborn - Interview Questions and Answers
Matplotlib is a popular Python library for creating static, animated, and interactive visualizations. It provides an interface similar to MATLAB and is useful for plotting various graphs, such as line charts, bar charts, histograms, scatter plots, and more.
You can install Matplotlib using pip:
pip install matplotlib
A Matplotlib figure consists of:
- Figure: The overall container holding the plot.
- Axes: The plotting area (can be multiple in a figure).
- Axis: The x and y coordinate system.
- Ticks & Labels: Markings along the axes.
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 30, 40]
plt.plot(x, y)
plt.show()
pyplot is a module that provides a simple interface for creating figures. figure is used to create a blank canvas for plotting multiple subplots.
plt.figure(figsize=(10, 5)) # Width=10, Height=5
fig, ax = plt.subplots(2, 2) # 2x2 grid of plots
plt.xlabel("X-axis Label")
plt.ylabel("Y-axis Label")
plt.title("Plot Title")
plt.show() displays the plot on the screen, while plt.savefig("plot.png") saves it as an image file.
plt.style.use('ggplot') # Apply the ggplot style
plt.bar(x, y, color='blue')
plt.plot(x, y, label="Line 1")
plt.plot(x, [y_i + 5 for y_i in y], label="Line 2")
plt.legend()
A scatter plot shows individual points, while a line plot connects them.
plt.hist(data, bins=10, color='green')
plt.plot(x, y, linestyle='--', marker='o', color='red')
plt.xticks([0, 2, 4, 6])
plt.yticks([10, 20, 30])
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
import pandas as pd
data = pd.date_range(start="2023-01-01", periods=10, freq="D")
plt.plot(data, y)
plt.savefig("plot.png", dpi=300)
- Use
scatter()instead ofplot()for large datasets. - Reduce transparency with
alpha=0.5. - Optimize with
downsamplingtechniques.
Seaborn is a higher-level visualization library built on Matplotlib that provides better defaults and advanced statistical plotting.
import seaborn as sns
sns.scatterplot(x="column1", y="column2", data=df)
It groups data points by color.
sns.scatterplot(x="x", y="y", hue="category", data=df)
sns.violinplot(x="category", y="value", data=df)
sns.heatmap(data.corr(), annot=True, cmap="coolwarm")
sns.regplot(x="x", y="y", data=df)
g = sns.FacetGrid(df, col="category")
g.map(sns.histplot, "value")
sns.despine()
Use sample(), agg() for aggregation, or FacetGrid for breaking data into smaller plots.
- ImportError: Ensure libraries are installed.
- ValueError: Check data types before plotting.
import numpy as np
x = np.arange(3)
values1 = [5, 7, 9]
values2 = [6, 8, 10]
plt.bar(x - 0.2, values1, width=0.4, label='Group 1')
plt.bar(x + 0.2, values2, width=0.4, label='Group 2')
plt.xticks(x, ['A', 'B', 'C'])
plt.legend()
plt.show()
plt.text(2, 15, "Annotation Here", fontsize=12, color='red')
alpha controls the transparency of a plot.
plt.scatter(x, y, alpha=0.5)
plt.grid(True, linestyle='--', linewidth=0.5)
plt.bar(x, values1, label="Category 1")
plt.bar(x, values2, bottom=values1, label="Category 2")
plt.legend()
plt.xscale("log")
plt.yscale("log")
plt.legend(loc='upper left', bbox_to_anchor=(1,1))
labels = ['A', 'B', 'C']
sizes = [40, 35, 25]
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.title("Title", fontsize=14, fontweight='bold')
Use bar() with cumulative sums and a baseline shift.
sns.boxplot(x="category", y="value", data=df)
- It sets the color scheme for the plots.
sns.scatterplot(x="x", y="y", data=df, palette="coolwarm")
sns.kdeplot(df["column"], shade=True)
sns.pairplot(df)
stripplot()places points randomly along the x-axis.swarmplot()avoids overlapping points.
sns.swarmplot(x="category", y="value", data=df)
plt.figure(figsize=(10, 5))
sns.heatmap(df.corr(), annot=True, cmap="Blues")
A FacetGrid allows multiple plots to be displayed side by side for different subsets of the data.
sns.jointplot(x="x", y="y", data=df, kind="scatter")
fig, ax = plt.subplots(2, 2)
plt.scatter(x, y, c=y, cmap="viridis")
Seaborn provides better aesthetics and statistical plots.
%matplotlib notebook
sns.set_theme(style="darkgrid")
sns.set_theme() provides better control over aesthetics.
for index, value in enumerate(y):
plt.text(index, value, str(value))
sns.heatmap(df.corr(), annot=True)
plt.violinplot(data)
- Large datasets slow down rendering.
- Incompatible versions cause unexpected behavior.
- Matplotlib styles can sometimes override Seaborn themes.
Tutorials
Random Blogs
- Python Challenging Programming Exercises Part 2
- 10 Awesome Data Science Blogs To Check Out
- Robotics & AI – How AI is Powering Modern Robotics
- Internet of Things (IoT) & AI – Smart Devices and AI Working Together
- AI Agents: The Future of Automation, Work, and Opportunities in 2025
- Understanding SQL vs MySQL vs PostgreSQL vs MS SQL vs Oracle and Other Popular Databases
- Understanding HTAP Databases: Bridging Transactions and Analytics
- AI in Cybersecurity: The Future of Digital Protection
- Python Challenging Programming Exercises Part 1
- Types of Numbers in Python
