- Python for Web Development
-
Overview
- Introduction to Flask and Django
- Setting Up a Flask Application
- Django Models and Migrations
- Routing and URL Handling in Django and Flask
- Forms and User Authentication in Django and Flask
- REST API Development with Flask & Django
- Working with Databases (SQLite, PostgreSQL, MySQL)
- Template Engines (Jinja2 for Flask, Django Templates)
- Deployment of Flask & Django Applications on AWS, GCP, and Heroku
- Security Best Practices for Web Apps
Security Best Practices for Web Apps
Security is one of the most critical aspects of web development. Poor security practices can lead to data breaches, unauthorized access, and cyber attacks. In this tutorial, we’ll cover the best security practices for Flask and Django web applications.
1. Keep Your Dependencies Updated
Using outdated libraries can introduce vulnerabilities. Always keep your dependencies updated:
For Flask:
pip list --outdated
pip install --upgrade <package-name>
For Django:
pip list --outdated
pip install --upgrade django
You can also use pip-audit
to check for vulnerabilities:
pip install pip-audit
pip-audit
2. Use Environment Variables for Secrets
Never store API keys, database credentials, or secret keys in code. Instead, use environment variables.
Flask Example:
import os
SECRET_KEY = os.getenv("SECRET_KEY", "default-secret-key")
Set it in your .env
file:
SECRET_KEY=mysecurekey123
Django Example:
import os
SECRET_KEY = os.environ.get("SECRET_KEY", "default-secret-key")
Use python-dotenv to load environment variables:
pip install python-dotenv
3. Secure Database Connections
- Never expose your database credentials in code.
- Use an ORM (like SQLAlchemy or Django ORM) to prevent SQL injection attacks.
- Disable remote access to your database unless absolutely necessary.
Django Settings for Secure Database Connections:
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': os.getenv("DB_NAME"),
'USER': os.getenv("DB_USER"),
'PASSWORD': os.getenv("DB_PASSWORD"),
'HOST': os.getenv("DB_HOST"),
'PORT': '5432',
}
}
4. Protect Against SQL Injection
SQL injection is one of the most common attacks on web applications.
Bad Example (Vulnerable to SQL Injection):
cursor.execute(f"SELECT * FROM users WHERE username = '{username}'")
Secure Example Using ORM:
User.objects.filter(username=username).first() # Django ORM
db.session.query(User).filter_by(username=username).first() # Flask SQLAlchemy
5. Prevent Cross-Site Scripting (XSS)
XSS attacks inject malicious scripts into web pages.
Django Automatically Escapes Input in Templates:
<p>{{ user_input }}</p> <!-- Secure -->
Flask Uses Jinja2 (which escapes input by default):
<p>{{ user_input }}</p> <!-- Secure -->
But be careful when using |safe
:
<p>{{ user_input | safe }}</p> <!-- Risky -->
6. Use CSRF Protection
CSRF (Cross-Site Request Forgery) tricks users into submitting unauthorized actions.
In Django (CSRF Protection is Enabled by Default)
Make sure your templates include:
<form method="POST">
{% csrf_token %}
<input type="submit" value="Submit">
</form>
In Flask, Use Flask-WTF for CSRF Protection:
pip install flask-wtf
Then, add CSRF protection:
from flask_wtf.csrf import CSRFProtect
csrf = CSRFProtect(app)
7. Implement Strong Authentication and Authorization
- Use secure password hashing (bcrypt, Argon2, PBKDF2).
- Implement multi-factor authentication (MFA) for sensitive actions.
- Use Django’s built-in authentication system or Flask extensions like Flask-Login.
Django Password Hashing:
from django.contrib.auth.hashers import make_password
hashed_password = make_password("mypassword")
Flask Password Hashing (Using Werkzeug):
from werkzeug.security import generate_password_hash
hashed_password = generate_password_hash("mypassword")
8. Secure Session Management
- Use HTTPS-only cookies to prevent session hijacking.
- Set secure session cookies in Django and Flask.
Django Session Settings:
SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True
Flask Secure Sessions:
app.config['SESSION_COOKIE_SECURE'] = True
app.config['REMEMBER_COOKIE_SECURE'] = True
9. Enable HTTPS with SSL/TLS
Always encrypt data in transit with HTTPS.
For Django:
pip install django-sslserver
Enable SECURE_SSL_REDIRECT in settings:
SECURE_SSL_REDIRECT = True
For Flask:
Use Flask-Talisman:
pip install flask-talisman
from flask_talisman import Talisman
Talisman(app)
10. Prevent Clickjacking (X-Frame-Options Header)
Clickjacking tricks users into clicking hidden UI elements.
Django Security Settings:
X_FRAME_OPTIONS = 'DENY'
Flask Security Headers (Using Flask-Talisman):
Talisman(app, frame_options="DENY")
11. Regularly Audit Your Web Application
- Use security scanners like OWASP ZAP or Burp Suite.
- Run static code analysis tools (e.g., Bandit for Python).
pip install bandit
bandit -r myproject/
- Monitor logs and detect suspicious activity.
Conclusion
By implementing these security best practices, you can protect your Flask and Django applications from common vulnerabilities.
- Keep dependencies updated
- Secure your database connections
- Prevent SQL injection & XSS
- Use CSRF protection
- Implement strong authentication
- Secure sessions & enable HTTPS
- Prevent clickjacking & audit your app
Prepare for Interview
- Debugging in Python
- Multithreading and Multiprocessing in Python
- Context Managers in Python
- Decorators in Python
- Generators in Python
- Requests in Python
- Django
- Flask
- Matplotlib/Seaborn
- Pandas
- NumPy
- Modules and Packages in Python
- File Handling in Python
- Error Handling and Exceptions in Python
- Indexing and Performance Optimization in SQL
Random Blogs
- OLTP vs. OLAP Databases: Advanced Insights and Query Optimization Techniques
- The Ultimate Guide to Starting a Career in Computer Vision
- Why to learn Digital Marketing?
- 10 Awesome Data Science Blogs To Check Out
- Convert RBG Image to Gray Scale Image Using CV2
- Internet of Things (IoT) & AI – Smart Devices and AI Working Together
- The Ultimate Guide to Artificial Intelligence (AI) for Beginners
- Datasets for Speech Recognition Analysis
- Google’s Core Update in May 2020: What You Need to Know
- The Ultimate Guide to Machine Learning (ML) for Beginners
- The Ultimate Guide to Data Science: Everything You Need to Know
- Exploratory Data Analysis On Iris Dataset
- Generative AI - The Future of Artificial Intelligence
- Top 15 Recommended SEO Tools
- AI in Marketing & Advertising: The Future of AI-Driven Strategies
Datasets for Machine Learning
- Ozone Level Detection Dataset
- Bank Transaction Fraud Detection
- YouTube Trending Video Dataset (updated daily)
- Covid-19 Case Surveillance Public Use Dataset
- US Election 2020
- Forest Fires Dataset
- Mobile Robots Dataset
- Safety Helmet Detection
- All Space Missions from 1957
- OSIC Pulmonary Fibrosis Progression Dataset
- Wine Quality Dataset
- Google Audio Dataset
- Iris flower dataset
- Artificial Characters Dataset
- Bitcoin Heist Ransomware Address Dataset